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Abstract 

The invariant function approach is applied to the Fritzscb and Stech quark 

mass matrices to derive explicit analytic formulas for the measurable KM ma- 

trix elements and commutator determinant associated with CP violation. Im- 

position of the ARGUS B - l? mixing results greatly restricts the allowed 

top quark mass range. The Fritzsch model with minimal Biggs structure is 

marginally viable with 95 6 mt 6 105 GeV, but the top mass range can be eas- 

ily extended downward to 70 GeV in the two-doublet Higgs version. The Stech 

model, on the other band, restricts the maximum top mass to N 50 GeV and 

is ruled out except in the two-doublet Biggs version with somewhat unnatural 

parameters. 
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I. INTRODUCTION 

One of the outstanding issues in particle physics concerns the pattern of quark 

masses and mixings. 

In the minimal version of the Standard Electroweak Model’ (EWM) there is only 

a single mass scale 2) N 250 GeV, the vacuum expectation value of the Higgs field. 

Nevertheless, the quark (leptons) masses are all arbitrary because the Higgs-fermion 

coupling constants are not fixed by the EWM. Furthermore, the EWM can not predict 

the individual elements of the quark mixing matrix; however, it does require that the 

mixing matrix be unitarys. In the extended versions of the EWM where two Higgs 

doublets are introduced, there are two fundamental mass scales, u and n’, the vacuum 

expectation values of the two doublets. In order to avoid severe problems due to flavor- 

changing neutral currents, it is assumed’ that one of the doublets is responsible for 

the masses of the up-type quarks and the other for the down-type quarks. Again, as 

in the case of the minimal version, the quark masses and mixings remain arbitrary. 

The above unsatisfactory feature of the EWM has, in the past decade, generated 

two major approaches to the question of masses and mixings as follows: 

i) Since the quark masses and mixings originate from the quark mass matrices, a 

number of authors have attacked the issue by assuming “reasonable” specific forms 

for the quark mass matrices. These mass matrices have either been inspired by 

gauge models or have been derived by imposing exterior principles, such as discrete 

symmetries, hierarchical structure, mixing of nearest neighbors, etc. Given the mass 

matrices, for the up-type and down-type quarks, one may compute the eigenvahes 

(quark masses) and mixings as functions of the parameters of the model. A desirable 

requirement is that the model in question be as predictive as possible, i.e., the number 

of parameters in the model should be as small as possible. In the minimal EWM, with 
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n families of quarks, the number of independent measurables (masses and mixings) is 

27% + (n - 1)” = 7&l + 1 (1.1) 

where 2n equals the number of masses and (n - 1)’ is the number of independent 

measurables of the quark mixing matrix. Furthermore, one should keep in mind that 

many of the measurables in (1.1) are not known. In fact, even the number of families 

is unknown. A great deal of work has been done within the framework i) described 

above. See, for example, refs. 5 6. 

ii) A second mainstream of papers has addressed the question of how to parametrize 

the quark mixing matrix. This might seem strange, for afterall the general parametriza- 

tion of a unitary n x n matrix in terms of rotation angles and phases has been discussed 

in great detail by Murnaghan’. In fact, all parametrizations proposed in the literature 

are simply special cases of the Murnaghan parametrizations and are, of course, equiv- 

alent to one another. The only justification for introducing different parametrizations 

is that the quark mixing matrix is already quite complicated for the case of three fam- 

ilies. For larger numbers of families, this complexity increases dramatically; therefore, 

it may turn out that physics would look simpler in some parametrizations than in 

others. Some examples of parametrizations of the quark mixing matrix in terms of 

angles and phases are given in refs. 8 _ 10. Among these papers, ref. 8 is the fun- 

damental result by Kobayashi and Maskawa, who showed that for n = 3 the quark 

mixing matrix could be parametrized by three angles and a phase. 

Since angles and phases are convention dependent, it is desirable to introduce 

combinations of them which are directly measurables and thus convention indepen- 

dent. The plaquettes in the quark mixing mathx provide such measurables. For 

n = 3, such measurables are given in refs. 11 - 13. The general structure of the quark 

mixing matrix in terms of its plaquettes and plaques, for arbitray n, has been studied 

by Bjorken and Duni&G4. Furthermore, for n = 3, Woifenstein15 has provided us 
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with a useful and easy to remember empirical parametrization of the quark mixing 

matrix. 

Finally, one of us (C.J.) has proposed Is that, for n = 3, the simplest parametriza- 

tion of the quark mixing matrix is obtained by forgetting all about the angles and 

the phase. Instead, one can use four (independent) moduli of the mixing matrix. 

The point is that the moduIi are directly measurables, while the angles and phase are 

convention dependent and, furthermore, have to be extracted from measurables. So 

far, since the angles and the phase are not known to have a fundamental status, there 

is no need to bother about extracting them. This state of affairs could change in the 

future, if we would find that the angles and phase, in some convention, do actually 

have important physical “meaning”. 

In this paper, we wish to reinvestigate the above issues using the method of 

invariant functions of mass matrices*’ and the flavor projection operators’*. As we 

shall demonstrate below, this method is convenient as follows: Given the two n x n 

mazs matrices M and M’ for the up- and down-type quarks, respectively, what one 

usually does is 

a) find the eigenvalues (masses), 

b) calculate the measurables of the quark mixing matrix, 

c) compare them with data. 

As we shall see below, the task b) is much simplified by using the projection technique, 

where one simply projects out the appropriate measurables in closed analytic forms. 

In general, the measurables are rather complicated functions of the parameters of 

the mass matrices which are not manageable by hand unless one is willing to make 

approximations. Therefore, it is useful to have exact analytic expressions which the 

computer can easily handle. The computer can, for example, easily check the unitarity 

of the resulting quark mixing matrix, etc. 

In this paper, we extend our earlier work” and examine in some detail two popular 
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models of quark mass matrices. Since the methods described in this paper are new, 

we shall present them in a pedagogical fashion, so that the interested model builder 

may easily apply them to the analysis of her/his favorite model. The plan of the paper 

is as follows: In Section II we present the technique of flavor projection operators in 

generality for hermitian, as well as nonhermitian, mass matrices. The commutator of 

the quark mass matrices plays a special role if CP is violated as illustrated for three 

families. The invariant function approach is applied in Section III to the Fritzsch and 

Stech mass matrices to extract closed analytic forms for the absolute squares of the 

KM mixing matrix elements and the determinants of the mass matrix commutators. 

In Section IV two determinations of the quark masses at 1 GeV are presented along 

with expressions needed to evolve the top quark mass up to its physical mass scale. 

A recent determination of the KM matrix elements is also presented. A numerical 

analysis is carried out in Section V in both the Fritzsch and Stech models with minimal 

Higgs and two-doublet Higgs structures to find the allowed range of top quark masses 

which best fits the KM matrix information as well as the B - B mixing information 

from the ARGUS collaboration. Our results are summarized in Section VI. 

II. TECHNIQUE OF FLAVOR PROJECTION OPERATORS 

In this Section we shall give a brief account of the invariant approach” and flavor 

projection operators”. Our purpose is to establish our notations and give explicit 

analytic formulas for measurables. 

Assume that there are n families of quarks and denote the mass matrices for the 

up- and down-type quarks by M and M’, respectively. Since in the EWM one may”, 

without lack of generality, take M and M’ to be hermitian, we shall first consider the 

hermitian case. The generalization to nonhermitian mass matrices is given later. 
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A. Hermitian Mass Matrices 

The hermitian n x R mass matrices M and M’ are, as usual, diagonalized via 

unitary rotations. We shall denote the eigenvalues of the mass matrices by X,, Xd, 

etc., the point being that these eigenvalues are real but not necessarily positive. Thus 

xi = m:, etc., where m, is the (positive) mass of the up quark, etc. We have 

UMUt = diag(X,, A,, At, . ..) 

UI’M’U’t = diclg(Xd,&,Xb, . ..) 
P-1) 

The projection operators for the up-type quarks are given by 

P,(M) = G(M)/~ (2.2) 

Here 21 is the Vandermonde determinant 

v = v(A,, A., A,, . ..) = n (A, - A,) (2.3) 
8>7. 

where X1 = X,,X? = X., etc. For example, for 7~ = 3 we have v = (X, - X.)(X, - 

X,)(X. - X,). The numerator u-(M), in Eq. (2.2) is obtained from v by replacing X, 

with the mass matrix M and multiplying all &,p # a, with the unit matrix. Thus 

II, in the case of n = 3 is given by 

vu(M) = (A, - X.)&l - M)(X,l -M) (2.4) 

Here 1 is the unit n x n matrix. If there are degeneracies in the up sector, the con- 

struction above needs some modifications (for details see ref. 18). The construction 

of the projection operators for the down-type quarks follows exactly in the same way 

as for the up-type quarks. 

Given any pair M and M’, we may rotate both of them with the same arbitrary 

unitary matrix X. The measurable quantities remain invariant17 under such a rota- 

tion. Thus all measurables must be invariant functions of mass matrices, where an 
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invariant function f(M, M’) is defined to be such that 

f(M, M’) = f(XMXt, XM’Xt) (2.5) 

The measurables of the quark mixing matrix are expressible in manifestly invariant 

terms with the help of projection operators. The square of the modulus of the matrix 

element V,j, where a = u, c, t, . . . and j = d, s, b, . . . is given by17Js 

where P,(M) is defined in (2.2) and Pj is the projection operator for the down quark, 

etc. The purpose of the prime is only to remind us that we are dealing with a down- 

type quark. Similarly, other measurables can be projected out. For example, 

Lj,(v+)’ V (Vt)j,., = TT(P,,P~,P,,P~,...P,.P:,) ,,“,..’ m.fn (2.7) 

Here the indices are not summed. 

B. Some Results for n = 3 

For the case of three families, which will be our main concern in this paper, the 

commutator of the quark mass matrices defined by 

[M, M’] = iC G-1 

plays a central role. CP is violated if, and only if, det C # 0. The determinant is 

given by” 

det C = -2&J (2.9a) 

where 

2) = (At - X.)(X, - X,)(X. - A,) 

21’ = (A, - &)(A, - A,)(& - Ad) 

(2.96) 
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and J is an invariant of the quark mixing matrix. It is given by 

Im(KjVpkVzkVij) = JC h&yEjkl 

%l 
(2.10) 

where the sum in the RHS equals either plus or minus one, depending on which IOWS 

(u,/3) and columns (j, k) are chosen. The quantity J itself, up to an overall sign, can 

also be written’s in terms of the moduli of the elements of the quark mixing matrix. 

One finds 

4J2 = -X((V,jlzlV,klZ,Iv~j121VBkIz,IV~jlZI~k12) (2.11) 

where the rows cc, p, 7 are any permutation of 1,2,3 and the columns j and k satisfy 

j # k. An equivalent way of writing Ja is in the column formulation, where 

45’ = -X(IV,jlzIV~jl*, I~kI”IbkI’t I~~l’lb~l’) (2.12) 

Here the columns j, k, I are any permutations of 1,2,3 and the rows Q and p satisfy 

the condition o # p. The function X is sometimes referred to as the Kaen’s X 

function” or the triangular function2’, the reason being that 

X(+,y,z)=I~+y~+z~-2+y-2yz-2tz (2.13) 

determines the area of the triangle with the sides Jx, dy and Jz. Thus J’ defines 

a “CP violation area”. However, it would be unwise*s to use this area to define a 

measure of CP violation because the condition for CP violation does not involve only 

J but rather det C of Eq. (2.9). 

In applications, we shall use Eq. (2.9) t o compute J as function of the parameters 

of models of mass matrices and will use Eqs. (2.11) and (2.12) to relate J’ to the 

elements of the quark mixing matrix. 
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C. Nonhermitian Mass Matrices 

If the mass matrices M and M’ are not hermitian, we take their hermitian 

“squares” S and S’ defined by 

S = MMt. S’ = M’M’+ 

The eigenvalues of these matrices are nonnegative, viz., 

USUt = diag(rl,zz, . . ..I.) 

UYYU’t = diag(ri, z;, . . . . zk) 

where 

( z,,q ,..., 2,) = (m:,m: I...) 

( a!;, z;, . . . . z;) = (7&m;,...) 

Now the projection operators are given by 

(2.14) 

(2.15) 

(2.16) 

P,(S) = %(S)/~, Pjl(S’) = tgS’)/v’, a,j = 1,2 , . . ..n (2.17) 

where 

21 = V(Zl,llr..., 4 = n (“0 - %) (2.18) 
8>7 

and v,(S) is obtained from v by replacements t, -+ S and “0 -+ zpl, p # Q. Here 

1 is the unit matrix. Thus the construction follows exactly the same pattern as the 

hermitian case, cf. after Eq. (2.2). Furthermore, the invariant functions of S and S’ 

may be defined as in Eq. (2.5) by simply replacing (M,M’) by (S,S’). Finally, the 

commutator of the mass matrices now involves S and S’ instead of M and M’, and 

its determinant has the form (2.9), where v and Y’ involve the squares of the masses, 

cf. Eq. (2.18), but J is exactly the same as before as defined by Eq. (2.10). 
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III. FHITZSCH AND STECH MODELS 

A. Fkitzsch Mass Matrices 

In order to demonstrate the power of the invariant approach and the projection 

technique, we apply it to the welI known case of the Fritzsch mass matricesz4, for 

n = 3, given by 

M+ ;* ;), M’=[; ;; ;;) (3.1) 

where M and M’ are hermitian mass matrices for the up- and down-type quarks, 

respectively. The entries in these matrices are complex numbers. Without lack of 

generality one may take C and C’ to be positive. Furthermore, as noted before in 

Eq. (2.5), one may rotate M and M’ with the same arbitary unitary matrix without 

changing the physics. By choosing X in Eq. (2.5) to be 

X = diag (erp(-i&..), 1, ezp(+)) 

where 4A and 4~ are the phases of A and B, M is made real with positive entries. 

Thus the number of parameters in M and M’ is eight. These are A, B, C, IA’I, 113’1, C’ 

and the phases +A, and I#IB,. Since there are, in principle, ten measurables according to 

(l.l), there are two predictions; however, since mt is not known, one of the predictions 

is replaced by a prediction of the value of the top quark mass. 

The Fritzsch mass matrices I’ have enjoyed a great deal of popularity in the 

past decade and have been studied by many authors2s-17. To quote one of the 

investigators ‘s, the analysis is “painstaking” if one wishes to avoid approximations. 

We shall now show that in the invariant approach the analysis becomes easy. 

First one may determine A, B, C, IA’I, IB’I and C’ as functions of the eigenvalues 

of M and M’. Let the eigenvalues of M and M’ be denoted by (X,,X.,X,) and 
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(XdrX,,Xb), respectively. A priori, the X’s which are real by hermiticity are not 

necessarily positive. Thus X, could be either +m, or -mu, where m, is the physical 

mass of the up quark, etc. We have 

TTM = X,+X,$X, = C 

TTM~ = X:+X2+X” = Cz+2(Ba+A7 c ” 

DetM = X,X,XI = -CA’ 

(3.2) 

Solving for A, B and C yields 

c = A, + A. + A, (3.3a) 

CB2 = -(A + X,)(A, t X,)(X, + A,) (3.3b) 

CA’ = -XJJ, (3.3c) 

Since we are looking for a solution with a hierarchial structure (Xt( >> IX.1 >> ]A”], 

we see from (3.3a) that X, = mt, C being positive. From (3.3b) it now follows that 

X. is negative, i.e., X, = -m,. Finally (3.3~) yields X, = m,. This result that 

the Fritz& form requires the second eigenvalue X, be negative is well known in the 

literature. Thus 

c = m~-m,tm” 
B = [(m, - m.)(mt + m&m. - 41W2 (3.4) 

A = [mrm,m,/C]“l 

Similarly, C’,/B’l and IA’1 are obtained from (3.4) by replacing (m,,m,,m,) by 

(md,%,mb 1. 

By using these relations the above parameters may be eliminated, i.e., replaced 

by measurable quantities. Thus we have two remaining parameters, 4~8 and 4~8, and 

four measurables of the quark mixing matrix. The measurables of the quark mixing 
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matrix are 

WI 
IVmjl’ = TT [P,(M)~;(M~)] 

= #,d, + Aa + B’] [XL-h + (A’/’ t 

t [-$A, + A’] [&l\l + lA’12] 

+ [(Lx + X,)(X, t A,) + B’] [(:. Lj + xk)(xj + A) t IB’I’] 

t2(Xp t &)(xk t XI)A\A’~CO~A~ 

+2si,XjBIB’(cOSdB* t ~BAIB’I(A’(co~(~A~ + (6~0)) 

x [(Aa - A,)(& - &)(xj - xk)(xj - At)]-’ 

(3.5) 

where (cY,~,Y) is any permutation of (u,c,t) and (j,k,l) any permutation of (d,s,b). 

Furthermore, since for this Fritzsch case 

(A,, A., At) = (mu, -me,4 

(Ad? A#, Ab) = (md, +%mb) 

(34 

Eq. (3.5) together with (3.4) then yields the nine IV&(’ as functions of the six masses 

and two angles ~AV and $BS, but by unitarity only four of the IV,jl’ are independent. 

We may check on the computer whether, in the allowed range of phases +A, and 4B,r 

there is any solution with mt treated as a free parameter. This was the procedure 

followed in ref. 19. 

Another way of approaching the problem is as follows: We compute the four 

independent measurables of the quark mixing matrix from the four independent traces 

appearing in (3.5). We find 

Tv(MM’) = CX,XjlV&l* 
a,j 

= CC’ t 2B\B’lcos1& $2A~A’~cos~~~ (3.7a) 

Ty(M”M’) = CXiXj(Va/,j(’ 
-,j 

= C’(C’ + 9’) $2CB(B’(coqfqp (3.76) 
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Tr(MM”) = CX-X:lVajl’ 
=,j 

= C(C” + IB’I’) + 2BC’~B’lcoaqbv (3.7c) 

Tr(M’M”) = c X;X;IVpjj2 
,’ 

= ;L2 t B’)(C” + IB’(‘) + (A’ + B’)( /A’l’ + JB’I*) + A’IA’Ja 

+ 2BCC’IB’lcoaqb $ 2ABIA’IIB’lcoa(dA8 + &I,) (3.7d) 

With the magnitudes of the quantities A, B, C and their primed versions determined 

before as functions of the masses via (3.4), we may eliminate coadg, by combining 

Eqs. (3.7b) and (3.7~) to get a prediction for the t-quark mass as function of the five 

other quark masses and the IV-jl’. In this way the top quark mass is related to other 

measurables via 

C(C’X, - CXj)X,XjjV~jl’ - C’lBz $ C’IB’I’ = 0 (3.8) 
=j 

We may use Eqs. (3.7b) or (3.7~) t o e ermine cosd,, and subsequently use (3.7a) to d t 

compute COS~A,. Then Eq. (3.7d) will provide a further consistency relation. Since in 

that equation what enters is cos(C#A’ i- 4~,), we see that there is a two-fold ambiguity, 

i.e., if the fit requires ain~~,sin&~, > 0, we will not be able to distinguish between 

both sine functions being positive or both being negative. Similarly if the product 

of the two sines is negative, we will not be able to distinguish which one is negative 

and which one is positive. As discussed in Section IIB, the reason for the ambiguity 

is that the sign of J is not fixed by the moduli IVpjl. To determine the sign we must 

use the sign of one of the imaginary parts in Eq. (2.10). 

The quantity J, including its sign, can be determined from the determinant of the 
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commutator in Eq. (2.9). In the Fritzsch model we have 

:Det C = (BJB’lh&, - A]A’(.+hA,) [A1(B’(z + B’IA’IZ 

- ~ABIA’((B’~co~(~A~ t &w)] 

+AlA’]sin+~~ [C’IB’]’ + B’C” - 2CC’BIB’lcosc$,y] 
(3.9) 

= -VV’J 

With the replacements (3.6) in Eq. (2.9b) f or z1 and v’, we then find that J in (3.9) 

above can be written entirely in terms of measurable quantities with the help of Eqs. 

(3.7). 

Et. Stech Mass Matrices 

As a second example of the application of the invariant approach we consider the 

very popular model by Stech’s which has been studied by many authors. The Stech 

mass matrices are given by 

M’=pM+iA=pM+i (3.10) 

where the mass matrices are hermitian, the X’s are the eigenvalues and p is a constant. 

The entries a, b and d are real. Again by judicious choice of X in Eq. (2.5), we may 

take a and b to be positive. The Stech model, having seven parameters, gives three 

relations among the measurables. Since mt is not known, in principle, one of these 

relations will f7.x mt and there will be two further predictions among the measurables. 

In the invariant approach, the analysis goes as follows: First we have the Stech 

relations” 

p = TTM’/TTM = (Ad + A, + x,)/(x, t A. + A,) (3.11) 
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Furthermore 

TTM” = $(xf + A: + A;) + 2(a* + b’ + d’) = A: + A: + x,l (3.12) 

DetM’ = p(p’X,X.Xt - a’& - d’A. - b’X,) = XdX,Xb (3.13) 

Using these equations we may express a and b in terms of the quark masses and find 

a2 = [-X,EI + Ez - (A. - X,)d’] /(A, - A,) 

b2 = [&El - Ea - (A, - X,)d’] /(A, - A,) 

(3.14a) 

(3.14b) 

where 

El = $ [A; + A: + A; - p’(X: t A: + A:)] 

El = [p3k&.h - xdx.xb] /P 
(3.14c) 

Therefore the only remaining parameter is d, while we have four measurables l&j’ 

which we have not used yet. In contrast to Eq.(3.5) for the Fritz& model, these can 

be written 

IV,jj’ = TT [P,,(M)P;(M’)] 

= [(A, - pL)(h - pAa) + (a’ t d’)L t (a’ + b2)S,, 

+ (b’ t d’)Sat] [(A, - X,)(X, - Xj)]-’ 

(3.15) 

where again (j, k, I) is a permutation of (d,s, b). 

Computing the four traces in iV,jj* gives 

Tr(MM’) = C X,Aj/VmjI’ = p(Xi t X,f + Xi) 
a,j 

TT(M’M’) = CX~XjlV-jl’ = p(~~ + X~ $ X:) 
u.j 

(3.164) 

(3.166) 

= P’(x: + A: t A:) t k(a’ t d’) t &(a’ + b”) + Xt(b’ + daX3.16c) 
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= $(a: t A: t A:) + X:(a’ t d’) t A:(a’ + b’) t X;(b’ + d@lGd) 

Relations (3.16a) and (3.16b) give two relations for the top quark mass in terms of 

IV,jl’. Multiplying the first by Xt and subtracting the second from it gives 

P[xI(xt - xc) t X(X* - k)] = C,,jXmXj(Xt -X,)lVajl” 

= CjUj(k - k)(Kjl’ t CjXuXj(At - Xu)(Kjl’ 
(3.17) 

Using this equation and (3.16a), we have two second order equations for mt in terms 

of other measurables, i.e., 

tat t ‘C t h)c ~m~jl~jl’ - (h t a, f &)(a: f x: $ xi) = 0 (3.16a’) 
ad 

and 

tat + A, + w c 4 [w - xc)p$jl~ + A,(X, - X”)p,q’] j 
- tab + x. f Ad) [x:(x, - A,) t x:(x, - A”)] = 0 (3.17’) 

As before, the above equations do not determine the sign of d. The sign of d is 

determined from the determinant of the commutator, which is found to be 

Det C = -2&J = -2vabd (3.18a) 

Thus 

J = abd/v’ (3.18b) 
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IV. QUARK MASSES and EXPERIMENTALLY DETERMINED KM 

MATFUX 

We shall require the quark masses as input as well as experimental constraints 

on the KM matrix in order to limit the unknown parameters rnt,+a, and &V in the 

Fritzsch model, two of which can be independently determined. 

A. Quark Masses 

The light quark masses m,,md and m, follow from QCD sum rules in the MS 

scheme, while their ratios are determined more accurately from current algebra. On 

the other hand, for the heavy quark masses m.,mb and mt, each pole mass can be 

defined at the singularity of the quark propagator, or again alternatively from QCD 

sum rules. Moreover, the quark masses run with energy since their Yukawa couplings 

satisfy the renormalization group equations. In the approximation that the evolution 

equation is linear and involves just the gauge couplings, the solution up through two 

loops can be written asZs 

mi(p) = ai (yPo {I - z!glnLLtl + 2 +o pg]) (4.la) 

where fii is the renormalization group invariant mass, and in terms of the QCD scale 

4 

L=ln$ 

p. = 11 - $N,, 70 = 2 (4.16) 

PI = 102 - !$N,, rl = % - $N, 

for the appropriate number of flavors Nf. The running QCD coupling strength is 

given by 

a.(P) = 5 
1 

1 _ &lnL + * 
B;L (4.2) 

up through terms involving one loop. 
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In order to implement the invariant function approach described in Section II, 

it is important to determine the matrix elements of M and M’, and hence their 

mass eigenvalues, at the same energy scale, p. This can be accomplished by defining 

mi(mi) = mi and evolving the quark masses to 1 GeV. In doing SO, it is conventional 

to select As = 100 MeV as the 3-flavor QCD scale. To insure that a,(p) is continuous 

across the flavor thresholds then requires that one take A4 = 76 MeV and As = 47 

MeV, respectively, for the 4- and 5-flavor scales with the pole values m,(m,) = 1.28 

GeV and mb(mb) = 4.26 GeV. 

The quark mass determination by Gasser and Leutwyh#’ remains a standard 

choice: 

m, = 5.1 f 1.5 MeV, m., = 8.9 ic 2.6 MeV 

m, = 1.35 f 0.05 Get’, m, = 175 i 55 MeV (4.3) 

ml = 1 mb = 5.3 f 0.1 GeV 

with light quark mass ratios 

md - = 1.76 9~ 0.13, 2 = 19.6 f 1.6, 5 zz 34.5 * 5.1 
m” md m” 

(4.4) 

A new determination of the heavy quark masses based on the propagator singularity 

has been carried out by Narisonss who obtains 

m,(lGeV) = 1.36 + 0.02, mb(lGev) = 5.70 f 0.07 (4.5a) 

with 

me-mm, =9&2 
m-mm, 

The latter ratio together with (4.4) then yield 

m,(lGeV) = 155 f 36 MeV 

md(lGev) = 7.9 f 2.5 MeV 

m,(lGeV) = 4.5 f 1.7 MeV 

(4.5b) 

(4.5c) 



-18- FERMILAB-Pub-88/23-T 

for the light quarks. 

Finally we note that once a value for m,(lGeV) is determined by the invariant 

approach, it is necessary to evolve m,(p) u p ward to m,(m,) = rnt to find the appro- 

priate mass scale for the top quark. In doing so, we use ild from 1 GeV to mb(mb) 

and then A6 from mb(mb) to m,(m,). Thus mt is determined from the product ratio 

mt mt(mb) 
ml(mb) N,=s ' mW=V N,=l 

in terms of mt(lGeV). The mass of the dressed quark is then computed from the 

running mass with the first order QCD correction 

mfh”’ = m,(mt) (1 t $a, + @a:)} 

B. KM Matrix 

For the KM matrix we use a recent determination by Schubertsl as presented at 

the 1987 EPS meeting in Uppsala: 

i 

0.9754 f 0.0004 0.2206 i 0.0018 0 f 0.0087 

v= -0.2203 zt 0.0019 0.9743 f 0.0005 0.0460 f 0.0060 

0.0101 f 0.0086 -0.0449 f 0.0062 0.9989 & 0.0003 

i 

0 0 0 f 0.0087 

+i 0 f 0.0004 0 f 0.0001 0 

0 * 0.0085 0 f 0.0019 0 1 

(4.8) 

Here Vd is determined from superallowed beta decays and ~1 decay, Vu, from Ke3 

decay and hyperon decays with ScT(3) breakitg, Vcd from neutrino production of 

charm and V., from D decay lifetimes. The less accurately known VA follows from 

the B decay lifetime, V, from the ratio of (b + u)/(b -+ c), and Vtd and V,, from 

the ARGUS B” - B” mixing da@‘. Finally, unitarity of the 3-family KM matrix is 

imposed to determine Vi* and to reduce the errors on the other entries. 
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V. NUMERICAL ANALYSIS 

We now use the previously derived relations in Section III to test the predictions 

of the Fritzsch and Stech mass matrices with the known experimental data. The 

latter involves information on the allowed range for the top quark mass, the KM 

matrix elements, the J value for CP violation, BB mixing results for Am/P, the bag 

parameter BK, etc. The new information on BB mixing has important consequences 

for both mass matrix models and the appropriate Higgs sector - standard model or 

extended - as we shall see below. 

A. KM Matrix Elements Squared: [V,j(’ 

Our procedure for comparing the predictions of the Fritzsch mass matrices with 

the experimental limits given in Section IV is as follows: 

a) Select masses m(lGeV) for the five lightest quarks a,d,s, c and b which lie 

within the bounds and ratio limits stated in Section IV for the Gasser - LeutwylerrO 

or Narisons” determinations. 

b) Pick a top mass mt(lGeV) in the range 25 - 200 GeV and run through the 

complete range of phase angles 4~’ and 4~‘. The upper limit of 200 GeV selected is 

imposed by radiative corrections on the neutral current neutrino scattering datas3. 

c) Plot the allowed range of (6~s for given mt(lGeV) and selected 4..t, for which all 

calculated jVmjI* from Eq. (3.5) lie within one standard deviation of the KM matrix 

evaluation of Schubertsi given in Eq. (4.8). 

With this prescription, we find that the allowed support region is an annular ring 

in the ds, vs. m,(lGeV) plots for rather tightly constrained WAS, typically +c2O. We 

plot several examples in Fig. 1. Varying the input quark masses changes the size 

of the ring; notably the size is most sensitive to the strange quark mass m,(lGeV). 

Lowering the value down to 120 MeV increases the size of the annulus and the allowed 
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range for m,(lGeV). Along the bottom horizontal axis we have plotted r@” by 

scaling it relative to mt(lGeV) through Eqs. (4.6) and (4.7). 

In Fig. 2 we plot mt( 1GeV) and &” vs. m,(lGeV) to show the allowed range of 

m, obtained with the exact formula (3.5) for the KM matrix elements, IV,jl’. On the 

same Figure we also plot the upper bound on rnt obtained by the usual approximate 

method of first diagonalizing the Fritzsch mass matrices3’: 

m 22 
CgklY 

(5.1) 

which follows from the estimate 

IhI - Ig- e.p{-M/$l 

The cases illustrated in Fig. 2 correspond to IV,],,,.. = 0.052 and m, = 1.35 GeV, 

rns = 5.3 for the Gasser-Leutwyler masses and m, = 1.36 GeV, rnb = 5.7 GeV for 

the Narison masses. Comparison of our exact procedure with the approximate bound 

(5.1) reveals roughly a 10% discrepancy. Whereas the approximate formula leads to 

(mfh’%..= 2: 88 GeV and 97 GeV in the two cases above with m,(lGeV) = 120 

GeV, the exact upper limits are 97 and 107 GeV, respectively. 

Let us now turn our attention to the four independent trace equations (3.7a-d). 

We select the central values of jV,jl’ given by Schubert in (4.8) along with the five 

lightest quark masses m(lGeV) for u,d,~,c and b. Either Eq. (3.7b) or (3.7~) can 

be used to calculate COBRA, as a function of mt(lGeV), and the results typically 

agree with each other to one part in lo’, as well as with the values of 4~0 allowed 

in Fig. 1. Equation (3.7a) or (3.7d) can then be used to find 4a,, again with fair 

agreement with each other and the previous results in Fig. 1. When Eqs. (3.7b) 

and (3.7~) are combined to eliminate cosdgv, one finds the cubic equation for mt 

given in (3.8). Although this equation can, in principle, determine mt for a given 

set of five quark masses and a set of IVmjl “5, it is so sensitive to the values of the 
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KM matrix elements used that the procedure is unreliable. We prefer instead to use 

the method described earlier in this Section to fit the KM matrix elements to one 

standard deviation uncertainty. 

For the Stech model, our procedure for comparing the predictions of the KM 

matrix elements with those given in Section IV is as follows: 

a’) Select masses m(lGeV) for the five lightest quarks as in a) above for the 

Fritzsch model. 

b’) Pick a top mass m,( 1GeV) in the range 25 - 200 GeV and run through values 

for d lying in the range 0 5 IdI S a as determined from (3.14a). 

c’) Require that the 1Vaj12 calculated from (3.15) h ‘e within one standard deviation 

of the KM matrix element evaluation of Schubert given in (4.8). 

Acceptable predictions are obtained only for the identification (3.6) of the X, and 

~j with m, and mj as in the Fritzsch case and then only for the restricted band of 

rnt vs. m, indicated in Fig. 2. A maximum n$‘” of 48 - 51 GeV (depending upon 

which parametrization is used) is obtained for m,(lGeV) = 120 MeV, well below the 

maximum value permitted in the Fritzsch model. No acceptable solution is found for 

m, ;2 170 MeV. The actual choice of m, and nzd made within the allowed ratios of 

(4.4) limits the range of the matrix parameter d. 

Alternatively, we can select the central values for the iV,j I’, a set of the five lightest 

quark masses and find mt from the four trace relations given in (3.16) and (3.17). 

This method yields a value for mt(lGeV) consistent with Fig. 2 and the procedure 

described above. 

B. CP Violation Parameter J and Phase Angle 6 

The invariant J parameter associated with CP violation can be determined from 

Eq. (3.9) for the Fritzsch model for any point in the annular rings appearing in Fig. 1. 
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For the Stech model, J is determined from Eq. (3.18b) for any point in the allowed 

region of d vs. mt in (5.2) above with the aid of Eqs. (3.14). In the Fritesch model 

the J values lie in the range 0.1 x lo-’ 2 jJ/ s 0.45 x lo-‘, while in the Stech model 

this range is even greater. In a recent analysis of Donaghue, Nakada, Paschos and 

Wylers5, the preferred value is close to 0.3 x lo-‘, well within the allowed range of 

either model. 

It is customary to parametrize the 3-family KM matrix in terms of three angles 

and one phases. If we adopt the scheme favored by Chau and Leung’, Harari and 

Leure?, and Fritssch’s, one rotates the s and b quarks first by the angle 823, then the 

first and third family of down quarks by an angle 81s and phase 4, and finally the 

first and second familes by an angle Bis. This procedure corresponds to the complete 

breaking of the chiral 17(3)n @ U(3) n s y mmetry in stages such that only nearest 

neighbors mix to yield the observed spectrum. In this scheme the KM matrix is then 

given by 

C12C13 h2C13 813Ci6 

v= -c23312 - c11~23~13e i6 CllC23 - ~12323813e i6 C13S23 

I 

(5.2) 

h2+3 - cd23-we i6 
-e2513 - C23312313~ i6 

c13c23 

Using Eq. (2.10) we then observe that J can be written as 

J = I745’12V43v;~Va;) 

= cl~c:,c~3~l~sl3~~3sin6 

= Iv,,lIv,3lIK3llv,,lsin6 

(5.3) 

from which sin6 can be determined. Near the preferred value of J 2: 0.3 x lo-‘, we 

find sin6 N 1.0 in both models. Specific cases of interest are listed in Table I. 
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C. B - I? Mixing in One and Two Doublet Higgs Models 

We now turn to the restrictions imposed on the Fritzsch and Stech models by 

new combined information on the top quark mass and Vh and &, matrix elements. 

This arises from the recent ARGUS experimental result? on the Bi - & system. In 

Section IV we have noted that Schubert31 used this information to restrict the KM 

matrix elements in a model-independent fashion. Here we can obtain even stronger, 

model-dependent bounds. 

The ratio rd of the decay widths for the mixing mode relative to the direct mode 

is measured to be 

fd z 
I-(Bi -+ B; --+ X’) 

r(B,” + X) 
= 0.21 + 0.08 

and can be well approximated by 

in terms of the ratio of the mass difference to the average decay width, from which 

ld z An~~,~-&l?~ 2: 0.73 f 0.18 (5.4c) 

The mixing parameter, zd, can be approximated by the one loop box diagrams in- 

volving just W boson exchange in the minimal Higgs model with one doublet but 

also charged Higgs exchange in the two doublet Higgs model. In these two cases, we 

can write3s,37 

+d = ~m~rsBs~~lltm:lv,,vt;ilR(Ztr~~,~~/u~) (5.5a) 

and estimate this by using rns N 5.3 GeV for the mass of the B meson, 7~ N 

1.18 x 10-l’ set for its lifetime , B~fi N (0.140 f 0.040 GeV)’ for the product of the 

bag parameter and square of the B meson decay constant, and 7t N 0.85 for a QCD 
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+,, N 0.37 (f$$ m:lVtbVt~11R(ZtrZ~rD2/2)1) (5.5b) 

where3’ 

R(z~,G,,+I) = {[~+$&&&i-;&+] 

$2 (:>’ Zt [(rt-z*;(l-rt) + (G+i=Lp =n 

+&ln 4 - f k)’ =i [e (5.5c) 

+(.,-+;3(l-J n zq + g$$pl Z( 1 
+ i (?>‘zt [* - *zn ($1) 

in which v1 and Q are the vacuum expectation values of the Higgs giving masses 

to the up-type quarks and down-type quarks, respectively, and tt = (mt/Mw)s and 

z,, = (m,/Mw)’ are the squared ratios of the top quark and charged Higgs mass to 

the W mass. In these formulas mt is the running top quark mass. The first term in 

(5.6~) is the W box contribution to the BL - Bs mass difference which is the only 

term present in the standard minimal Higgs model. 

In Fig. 3 we plot R vs. mt for m, = 30,50 and 70 GeV and the ratio vl/vl = 0,0.5 

and 1. From Eqs. (5.4~) and (5.5b) we can then write 

m~IVtbV,‘d/aR(Z~,Z~,V~/V~) N (2.0 f 0.5) 
(0.140)1 

BBfi 

and can plot the bands corresponding to this for fixed us/v1 for both the Fritz& and 

Stech models. In Figs. 4 and 5 we superpose these B - B mixing bands with the KM 

allowed regions for the Fritzsch and Stech models, respectively, where we have used 

the central value of (0.140 GeV)a for B B f 3 in the plots, so the bands cover the range 

2.0 f 0.5. The right-most band in each figure applies for the minimal Higgs model, 

while the double-hatched band corresponds to the two-doublet Higgs model with 

V~/VI = 1.0 and charged Higgs mass m, = 50 GeV in the Fritz& case and m, = 30 
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GeV in the Stech case. It is apparent that these bands for the Fritzsch model with 

minimal Higgs structure do not overlap the allowed KM region, while overlap does 

occur with m, = 120 MeV in the two Higgs doublet version if us/viX 1. However, the 

Fritzsch model with just one Higgs doublet can not be ruled out3’ on the basis of the 

present ARGUS data due to the uncertainty in Bsfi indicated above. For example, 

by selecting Bsfi = (0.160 GeV)l instead, the bands cover the range 1.5 & 0.4 and 

nearly intersect the KM matrix-allowed annuli when the strange quark mass is taken 

to be 120 MeV in the Gasser-Leutwyler or Narison mass determinations. Slightly less 

overlap of the double-hatched band with the KM ring occurs in the Fritzsch case, 

if we raise m, to 70 GeV with us/u, = 1.0. The Stech model can be ruled out in 

the minimal Higgs case. With two-doublet Higgs structure, and m, = 30 GeV and 

us/vi = 2.0, the Stech model survives, but this case is very marginal, since the charged 

Higgs mass is just beyond present observation and the VEV ratio is anomalously large 

for the down quark sector relative to the up quark sector. 

D. Other Parameters of Interest 

We conclude our analysis by addressing several other parameters which are pre- 

dicted by the Fritzsch and Stech models and are of interest here. 

The predicted values for I&,/‘/\&l’ for both models suggest a B,O - & mixing 

parameter z,X 1Ozd corresponding to T, X 0.95 for the physically interesting cases, 

nearly maximal mixing in this channel compared to rd in (5.4a). The square of the 

amplitude ratio IV~l/lVcbl enters the prediction for the partial decay rates r(b --t 

ur)/r(b -+ cz’). The ARGUS group has recently observed39 the non-charmed decay 

+ modes Bf --t ppr+ and B” + ppr T - from which they have determined 

0.07 < 2 N k S 0.23 (5.7) 

The Fritz& model predictions are slightly below the lower bound for this ratio of 
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KM matrix elements as seen from Table I. 

Finally we note that the bag parameter BK can be determined from the E param- 

eter in K decay. For this purpose we use the expressions of ref. 40 to write 

IfI = &hf&“;~Kfk Ii’!..v,,,.&d( 

x { [73f3(4 - %] z,v,. + 92.%fi(Zt)l~bl* (v,. - j$+os6)} 

(5.8~~) 

in terms of the bag parameter BK in K decay, z. = (m,/Mw)’ and tl given earlier in 

Part c, 

f44 3 41 + 4 = 1 - ; 
(1 Q 

_ [ 1 I “_z:, In 1 
t 

*t 1 

f3(z1) = In2 - a& [1+ *zn zt] 
1 

and 7, = 0.7,~~ = 0.6,~~ = 0.4. Using standard values for the constants in (5.8), 

we find the values tabulated in Table I for the cases illustrated in Figs. 4 and 5. 

The values of Bx obtained with m, = 120 MeV and the top quark mass yielding the 

best fit for the KM matrix and B - B mixing data are in fair agreement with the 

predictions of Bardeen, Buras and G&ard” in the Fritzsch model. 

Neither a heavy top mass nor a heavy charged Higgs boson significantly modifies 

the standard u and c quark and W contributions to the E parameter given in (5.8) 

above. The same is true for the El/e ratio recently determined experimentally’s which 

is well explained by the standard EW model. 

VI. SUMMARY 

In this paper we have investigated the Fritzsch and Stech models of the quark 

mass matrices, using the invariant function approach developed by one of us (CJ). 

With this approach we are able to present explicit analytic formulas for the measur- 

ables, i.e., the squares of the KM mixing matrix elements and the J-value associated 
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with CP violation. It is then a simple matter to find the support regions in the top 

mass, rut, and remaining free-parameter space where the predicted KM matrix ele- 

ments lie within the experimentally determined bounds. For the Fritzsch model, this 

corresponds to an annular region in the 4~8 phase us. mr plane, while for the Stech 

model it is a very narrow elliptical region in the d vs. rut plane. 

The recent ARGUS data on Bz - & mixing further restricts the range of the 

combination rn: IV,dV,;I’ R, with R defined in Eq. (S.Sc), corresponding to bands in 

the ds, ‘vs. rut or d us. mt planes. We have considered the box diagram contributions 

to the mixing parameter for both the standard model with minimum Higgs structure 

and the two-doublet Higgs model. 

Our analysis indicates that the Fritzsch model with minimal Higgs structure 

is somewhat marginal. The strange quark mass at 1 GeV must be set equal to 

m,(lGeV) N 120 MeV and the mixing parameter zd must be taken on the low side 

of the experimentally determined value while the product of the bag parameter and 

decay constant squared, Bsf;, must be taken on the high side. The top mass, r$‘“‘, 

is then predicted to lie in the 95s m, ph”‘S 107 GeV range, depending somewhat upon 

the light quark mass determination employed in the analysis, i.e., that by Gasser and 

Leutwyler or that by Narison. Note that this conclusion is somewhat more pessimistic 

than that arrived at in our earlier letter because here we make use of the exact ex- 

pression for the box contribution to B - B mixing, and we have taken a slightly lower 

upper bound for IV&l than previously for the range allowed by the latest Schubert 

data analysis. 

As expected, if one expands the standard model to include a two-doublet Higgs 

structure, the Fritzsch model is less tightly constrained and more viable. We have 

considered a charged Higgs mass of 50 GeV and set the ratio of the two vacuum 

expectation values equal to unity. In this case, the allowed top quark mass range is 

85 N n@“S 107 GeV if we take the value BB[~B/’ = (140 MeV)‘, while it can be 
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lowered to (m~hy’)min H 70 GeV with th e c h oice Bg If~l’ = (160 MeV)l. However, a 

bag parameter BK closer to 0.7 than 1.0, as suggested by the analysis of Bums et al., 

favors the higher top quark masses. In either the minimal Higgs or two-doublet Higgs 

version of the Fritzsch model, we find the ratio of \Vus/V~l N 0.055, corresponding 

to a (b -+ u)/(b -+ c) transition ratio slightly on the low side compared to recent 

ARGUS data. 

In contrast, our exact treatment of the Stech model shows that the maximum top 

quark mass allowed by the present KM data lies in the range T@” -. 48 - 51 GeV. 

The standard model version with minimal Higgs structure is ruled out on the basis of 

the B-B mixing data, while the two-doublet Higgs version is still marginally viable, 

if we set the charged Higgs mass equal to 30 GeV and the vacuum expectation ratio 

to us/u1 N 2. The latter choice of parameters is somewhat unnatural, however, and 

the bag parameter in K decay is much too large. 
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Figure Caption 

Figure 1: Phase angle c$B, vs. m,(lGeV) and T&” plots in the Fritzsch model 

showing the physically allowed annular regions for the KM matrix ele- 

ments based on the one standard deviation results of Schubert31 given in 

Eq. (4.8). The sets of quark masses for the four plots illustrated, two 

with the Gasser-Leutwyler and two with the Narison determinations, re- 

spectively, are 

(a) m, = 5.1 MeV, md = 8.9 MeV, m, = 175 MeV, m, = 1.35 GeV and 

mb = 5.3 GeV; 

(b) m, = 3.5 MeV, rnd = 6.1 MeV, m, = 120 MeV, m, = 1.35 GeV and 

mb = 5.3 GeV; 

(c) m, = 4.5 MeV, md = 7.9 MeV, m, = 155 MeV, m, = 1.36 GeV and 

ms = 5.7 GeV; 

(d) m, = 3.5 MeV, rnd = 6.1 MeV, m, = 120 MeV, m. = 1.36 GeV and 

nab = 5.7 GeV. 

Figure 2: Allowed range of mt(lGeV) and n$‘“’ 21s. m, in the Fritzsch model 

obtained by fitting the squares of the KM matrix elements lVni12 to one 

standard deviation with the exact formula given in Eq. (3.5). The cases 

illustrated correspond to IV&l,,,,. = 0.052 with m. = 1.35 GeV and ms = 

5.3 GeV for the Gasser-Leutwyler masses (solid lines) and m, = 1.36 

GeV and mb = 5.7 GeV for the Narison masses (broken lines). For 

comparison, the approximate upper bounds from (5.1) are plotted as 

dashed lines. The corresponding allowed range in the Stech model is 

indicated by the two narrow bands. 

Figure 3: Plot of R(+,z,,,us/~~) defined in Eq. (5.6~) ~8. mt for the standard 

model with one Higgs doublet and the two Higgs doublet model. The 
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standard model result is represented by the lower solid curve, while the 

two- doublet model results are given by the two sets of three curves with 

the upper set referring to the vacuum expectation value ratio va/vl = 1.0 

and the lower set to W/Q = 0.5. In each set, the curves refer to a charged 

Higgs mass of 30, 50 and 70 GeV, respectively. 

Figure 4: Annular regions of Fig. 1 for the Fritzsch model allowed by the KM 

matrix elements and bounds following from Eq. (5.6) as determined by 

the Bd - Bd mixing results of the ARGUS collaboration. The single- 

hatched bands apply for the minimal Higgs standard model, while the 

double- hatched bands apply for the two Higgs doublet model with a 

charged Higgs mass of 50 GeV and VEV ratio VZ/V~ = 1.0. The sets of 

quark masses are identical to those for Fig. 1. 

Figure 5: Plot of d vs. mt(lGeV) and m, ph” for the Stech model with light quark 

masses m, = 3.6 MeV, md = 6.4 MeV and m, = 120 MeV for the Gasser 

- Leutwyler determination. The narrow elliptical iegion is that allowed 

by the KM matrix elements, while the single-hatched and double-hatched 

bands correspond to the standard model and two-doublet Higgs model 

results for Bd - & mixing as in Fig. 4. 
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